Improving Adaptive Bagging Methods for Evolving Data Streams

نویسندگان

  • Albert Bifet
  • Geoff Holmes
  • Bernhard Pfahringer
  • Ricard Gavaldà
چکیده

We propose two new improvements for bagging methods on evolving data streams. Recently, two new variants of Bagging were proposed: ADWIN Bagging and Adaptive-Size Hoeffding Tree (ASHT) Bagging. ASHT Bagging uses trees of different sizes, and ADWIN Bagging uses ADWIN as a change detector to decide when to discard underperforming ensemble members. We improve ADWIN Bagging using Hoeffding Adaptive Trees, trees that can adaptively learn from data streams that change over time. To speed up the time for adapting to change of Adaptive-Size Hoeffding Tree (ASHT) Bagging, we add an error change detector for each classifier. We test our improvements by performing an evaluation study on synthetic and real-world datasets comprising up to ten million

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Leveraging Bagging for Evolving Data Streams

Bagging, boosting and Random Forests are classical ensemble methods used to improve the performance of single classifiers. They obtain superior performance by increasing the accuracy and diversity of the single classifiers. Attempts have been made to reproduce these methods in the more challenging context of evolving data streams. In this paper, we propose a new variant of bagging, called lever...

متن کامل

Improving Incremental Recommenders with Online Bagging

Online recommender systems often deal with continuous, potentially fast and unbounded flows of data. Ensemble methods for recommender systems have been used in the past in batch algorithms, however they have never been studied with incremental algorithms, that are capable of processing those data streams on the fly. We propose online bagging, using an incremental matrix factorization algorithm ...

متن کامل

An Adaptive Grid-based Method for Clustering Multi- Dimensional Online Data Streams

Clustering is an important task in mining the evolving data streams. A lot of data streams are high dimensional in nature. Clustering in the high dimensional data space is a complex problem, which is inherently more complex for data streams. Most data stream clustering methods are not capable of dealing with high dimensional data streams; therefore they sacrifice the accuracy of clusters. In or...

متن کامل

Online Bagging for Recommendation with Incremental Matrix Factorization

Online recommender systems often deal with continuous, potentially fast and unbounded flows of data. Ensemble methods for recommender systems have been used in the past in batch algorithms, however they have never been studied with incremental algorithms, that are capable of processing those data streams on the fly. We propose online bagging, using an incremental matrix factorization algorithm ...

متن کامل

Adaptive Parameter-free Learning from Evolving Data Streams

We propose and illustrate a method for developing algorithms that can adaptively learn from data streams that change over time. As an example, we take Hoeffding Tree, an incremental decision tree inducer for data streams, and use as a basis it to build two new methods that can deal with distribution and concept drift: a sliding window-based algorithm, Hoeffding Window Tree, and an adaptive meth...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009